(Some) B anomalies and rare decays

F. Martínez Vidal

IFIC-Valencia

On behalf of the LHCb collaboration

Rare decays: menu

• • •

Semileptonic B decays $d[BF's]/dq^2$ of $B^{0/+} \rightarrow K^{(*)0/+}\mu\mu$, $B^0_s \rightarrow \phi\mu\mu$, $B^+ \rightarrow \pi^+\mu\mu$, $\Lambda_b \rightarrow \Lambda\mu\mu$ Angular analyses of $B \rightarrow K^{(*)}\mu\mu$, $B^0_s \rightarrow \phi\mu\mu$, $\Lambda_b \rightarrow \Lambda\mu\mu$ Observables less form factor dependent

Also electrons **Leptonic B decays** BF and effective lifetime of $B \rightarrow \mu \mu$ ~cancellation of LFU tests hadronic uncertainties BF's of $B \rightarrow \tau \tau$ and $B \rightarrow \mu \mu \mu \mu$ $B \rightarrow K^{(*)} ll$ in theory predictions **Radiative decays** LFV, e.g. $B \rightarrow e\mu$ $B \rightarrow D^{(*)} \overline{lv}$ $B^0 \rightarrow K^{*0} \gamma$ Charm decays P. Owen's talk $B^0_s \rightarrow \phi \gamma$ τ decays $D \rightarrow \pi \pi \mu \mu$ $B \rightarrow J/\psi\gamma$ **Strange decays** D→Κπμμ τ→μμμ $B \rightarrow K \pi \pi \gamma$ $K^0_s \rightarrow \mu \mu$ D→eµ τ→pµµ $\Sigma^+ \rightarrow p \mu \mu$ D→µµ O. Deschamps' talk

Enormous Physics Program, constantly expanding. Will cover only part

Flavour Physics at LHC Run 2, 21-27/05/2017 (Some) B anomalies and rare decays

Rare decays: why?

 Decays that proceed via FCNC transitions that only occur at loop order (or beyond) in the SM

- New particles can contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new CPV sources or modifying the angular distribution of the final-state particles
- Probes NP models at energy scales higher than direct searches

 B^0

 K^{*0}

3

Rare decays: how?

Rare hadron decay processes over a wide energy range

0.2GeV	4GeV	80GeV	~ 100 TeV ?
Λαςρ	۸b	Λ _{EW}	Λ _{NP}
non-perturbative regime)	(b mass)	(W mass)	(NP scale)

Described by effective field theory and operator product expansion:
[OPE: a series of effective vertices multiplied by effective coupling constants C_i and C'_i]

LH currents RH currents (suppressed in SM) $A(B \to f) = \left\langle f \left| H_{\text{eff}} \right| B \right\rangle = \frac{G_F}{\sqrt{2}} \sum_{j} V_j^{\text{CKM}} \left(\frac{C_j}{f} \left| O_j \right| B \right) + \frac{C'_j}{f} \left\langle f \left| O'_j \right| B \right\rangle \right)$

Wilson coefficients

(perturbative, short-distance physics, sensitive to $E > \Lambda_{EW}$)

Hadronic matrix elements

(include non-perturbative QCD, long-distance physics)

Flavour Physics at LHC Run 2, 21-27/05/2017 (Some) B anomalies and rare decays

Differential BFs

• Measured differential BFs in q² for B⁰ \rightarrow K^{(*)0}µµ, B⁺ \rightarrow K^{(*)+}µµ, B⁰_s \rightarrow ϕ µµ, $\Lambda_b \rightarrow \Lambda_{\mu}\mu$ consistently lower than SM predictions at 2-3 σ

✓ Measurements statistically dominated

✓ SM predictions limited by hadronic uncertainties on form factors

Flavour Physics at LHC Run 2, 21-27/05/2017 (Some) B anomalies and rare decays

B→K^{*0}µµ differential BF

Latest Run I LHCb and CMS BF measurements along same lines

■ Main systematic uncertainty from knowledge of normalization channel, i.e. $BF(B^0 \rightarrow J/\psi K^{*0})$

$B \rightarrow K^{*0} \mu \mu$ angular analysis

- Study of the full angular distribution of the final state particles $(\theta_l, \theta_K, \phi)$
- Measure all CP-averaged angular terms and CP asymmetries, described by eight observables S_i, F_L, A_{FB}, function of Wilson coefficients

$B \rightarrow K^{*0} \mu \mu$ angular analysis

- P'₅ LHCb local deviation from SM
 - ✓ 2.8 σ in 4 < q² < 6 GeV²/c⁴
 - ✓ 3.0 σ in 6 < q² < 8 GeV²/c⁴
- $B \rightarrow J/\psi K^{*0}$ angular distribution in excellent agreement with existing measurem.
- Statistically dominated measurement
- $B_{s}^{0} \rightarrow \phi \mu \mu$ angular analysis consistent with SM predictions

JHEP 09 (2015) 179

9

B→µµ BF

FCNC process, additional helicity & CKM suppression, theoretically clean

> $BF(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$ $BF(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

Sensitive to scalar/pseudoscalar contributions (no longer helicity suppressed)

LHCb+CMS Run I combination: $BF(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ 6.2σ

 $BF(B^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$ 3.0σ

✓ Consistent with SM

PRL112 (2014) 101801

 μ

PRL 118 (2017) 191801

Total

- - $B_s^0 \rightarrow \mu^+\mu^-$

- - · $B^0 \rightarrow \mu^+\mu^-$

 Combinatorial $B \rightarrow h^+ h^-$

 $-\cdots - \cdots B^0_{(s)} \rightarrow \pi^-(K^-)\mu^+\nu_\mu$ $B^{0(+)} \rightarrow \pi^{0(+)} \mu^+ \mu^-$

 $B_c^+ \rightarrow J/\psi \mu^+ \nu_1$

5800

 $m_{\mu^+\mu^-}$ [MeV/ c^2]

 7.8σ

6000

 $- - - \Lambda_{\nu}^{0} \rightarrow p\mu \overline{\nu}_{\mu}$

5600

5400

$B \rightarrow \mu \mu BF$

- Recent new result from LHCb adding 1.4 fb⁻¹ Run II data
- Same analysis strategy as previously
 - \checkmark B⁺ \rightarrow J/ $\psi(\mu\mu)$ K⁺ and B⁰ \rightarrow K⁺ π^{-} normalization channels
 - ✓ Improved B→hh rejection, \sim 50% less
 - ✓ Improved BDT and signal isolation
- Also, first measurement from ATLAS

Candidates / (50 MeV/c²

35

30 E

25

20

15

5000

LHCb

BDT > 0.5

5200

 $BF(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$

$B \rightarrow \mu \mu$ effective lifetime

• Is the $B_s^0 \rightarrow \mu\mu$ decay CP-even or CP-odd? \checkmark The two B⁰ weak eigenstates differ by about 12% in lifetime, $\Delta\Gamma_s/\Gamma_s \approx 0.12$ ✓ In the SM only the H eigenstate (almost purely CP-odd) decays as $B^0 \rightarrow \mu\mu$, i.e. $A^{\Delta} \approx +1$ $\boldsymbol{A}_{\Lambda\Gamma} = \frac{\Gamma(\boldsymbol{B}_{s}^{H} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) - \Gamma(\boldsymbol{B}_{s}^{L} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-})}{\Gamma(\boldsymbol{B}_{s}^{H} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) + \Gamma(\boldsymbol{B}_{s}^{L} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-})}$

PRL109 (2012) 041801

Does not necessarily hold in NP scenarios

• Measurement of effective lifetime in $B_s^0 \rightarrow \mu\mu$

$$\Gamma_{B_{s}^{0} \to \mu\mu}(t) \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - A_{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right] \approx \exp(-\Gamma_{B_{s}^{0} \to \mu\mu}t) \qquad \Gamma_{B_{s}^{0} \to \mu\mu} \approx \Gamma_{s} + \frac{A_{\Delta\Gamma}\Delta\Gamma_{s}}{2}$$

$$= B^{0} \to K^{+}\pi^{-} \text{ control mode}$$

$$= \text{ First measurement } (3+1.4 \text{ fb}^{-1})$$

$$\tau_{B_{s}^{0} \to \mu\mu} = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$$

$$\checkmark \text{ Consistent with } A_{\Delta\Gamma} = +1$$

$$(A_{\Delta\Gamma} = -1) \text{ at } 1\sigma (1.4\sigma)$$

$$= A_{\Delta\Gamma} \sin\left(\frac{\Delta\Gamma_{s}t}{2}\right) = e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - A_{\Delta\Gamma} \sin\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right]$$

Global fits

- Global fits using b \rightarrow sll (including LFU), B \rightarrow µµ and b \rightarrow sγ data, ~90 observables
- All global fits require an additional BSM contribution to accommodate the data, with a preference for NP in C₉ at $\sim 4\sigma$ level

• Or there is a problem with the understanding of QCD, e.g. estimating correctly the contributions from charm loops?

Understanding effects from charm

Prog. Part. Nucl. Phys. 92 (2017) 50

Z', leptoquarks

Hadronic SM effects

Large long-distance charm resonance effects far from the resonances on the q^2 plane

• Measure the resonance effects in C₉ in an inclusive analysis $B^+ \to K^+ \mu^+ \mu^- + B^+ \to K^+ X_{aa}(\mu^+ \mu^-)$

14

Measuring resonance effects in C₉

- Measure phase difference between short- and long-distance contributions to $B^+ \rightarrow K^+ \mu \mu$ decays EPJC 77 (2017) 161
- Use expression of differential decay rate in terms of short- and long-distance contributions (depends on the Wilson coefficients)
 - ✓ Model resonances as RBW × relative scale and phase arXiv:1406.0566

Measuring resonance effects in C₉

 The short-distance branching fraction agrees with the previous (exclusive) result:

 $BF(B^+ \to K^+ \mu^+ \mu^-) = (4.29 \pm 0.07 \pm 0.21) \times 10^{-7} \quad \text{old}$ $BF(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \pm 0.23) \times 10^{-7} \quad \text{new}$

- 1D (C₉,C₁₀=SM) fit: \checkmark C₉<SM (as the global fits)
- 2D (C₉,C₁₀) fit: \checkmark C₉>SM, C₁₀<SM
- No interference between penguin and J/ψ and $\psi(2S)$ resonances \Rightarrow minimal effect below their pole mass
- Inclusive $B^0 \rightarrow K^* \mu \mu$ analysis under way

Β→ττ

• Analogous to $B \rightarrow \mu\mu$, but much less helicity suppressed (lepton mass)

 $BF(B_s^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$ $BF(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$

✓ Sensitivity to NP suppressed compared to $B \rightarrow \mu\mu$

- With $B \rightarrow \mu\mu$ can be used to test LFU
- τ leptons selected in $\tau^+ \to a_1^- (\rho^0 \pi^-) \overline{v_\tau} \to \pi^+ \pi^- \pi^+ \overline{v_\tau}$ • Decay model tuned on CLEO data PRD61 (2000) 112002
- Experimentally very challenging due to two neutrinos in final state
- B⁰_s and B⁰ cannot be separated: assumption on one decay needed to extract limit on the other

arXiv:1703.02508

→ττ

- Approximate reconstruction by exploiting geometrical, kinematical and topological (isolation) variables
- Definition of *signal*, *control* and $(m_{\pi_1^{\pm}\pi_2^{\mp}}, m_{\pi_3^{\pm}\pi_2^{\mp}})$ background samples based on of $\tau^{\pm} \rightarrow \pi_1^{\pm} \pi_2^{\mp} \pi_3^{\pm} v_{\tau}$ decays
 - \checkmark Signal region: both τ in 5
 - \checkmark Control region: one τ in 4 or 8, the other in 4, 5 or 8
- $B^0 \rightarrow D^+[K^-\pi^+\pi^+]D_s^-[K^+K^-\pi^-]$ used as calibration and normalization channel
- Signal extracted from NN fit in 5

 $BF(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} @ 95\%$ CL $BF(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} @ 95\%$ CL

$$N_{B_s^0 \to \tau\tau} = -23 \pm 63 \pm 31$$

$B \rightarrow \mu \mu \mu \mu$

- B⁰→µ⁺µ⁻µ⁺µ⁻ and B⁰_s→µ⁺µ⁻µ⁺µ⁻ strongly suppressed in the SM
- Decays can proceed via resonant (dominant) and non resonant modes
- BF can significantly be enhanced, up to ~10⁻⁴
 - ✓ E.g. MSSM allows $B^0_{(s)} \to P(\mu^+\mu^-)S(\mu^+\mu^-)$, S and P sgoldstino particles

 $BF(B_s^0 \to J/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-) = (1.83 \pm 0.18) \times 10^{-8}$

19

• Interest also related to possible resonant contribution in $\Sigma^+ \rightarrow p\mu^+\mu^-$

JHEP 03 (2017) 001

Β→μμμμ

- Search for 4 muons originating from single vertex and far from the primary vertex
- J/ψ , $\psi(2S)$ and ϕ mass vetoes
- $B^+ \rightarrow J/\psi(\mu\mu)K^+$ used as normalization channel
- 0 events, consistent with background expectation

 $BF(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 6.9 \times 10^{-10} @ 95\% \text{ CL}$ $BF(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.5 \times 10^{-9} @ 95\% \text{ CL}$

Candidates / (34 MeV/ c^2)

2

4500

Assume $m_s = 2.6 \text{ GeV/c}^2$ and $m_P = 241.3 \text{ MeV/c}^2$

2

 $B(B^0_s \to \mu^+ \mu^- \mu^+ \mu^-) \ [\times 10^{-9}]$

✓ Can proceed only through P wave in absence of CPV

- SM prediction: $BF(K_s^0 \to \mu^+ \mu^-) = (5.0 \pm 1.5) \times 10^{-12}$
 - ✓ Can be enhanced by NP, e.g. new light scalars
- $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ used as calibration and normalization channel (also main background)
- BDTs based on kinematic, geometric, topological and PID variables
- Fit K⁰_s→µµ mass in all BDTs × bins × trigger categories

 $BF(K_s^0 \to \mu^+ \mu^-) < 1.0 \times 10^{-9} @95\%$ CL

Conclusion

- Many FCNC decays analysed, few anomalies...
- Differential BF in b \rightarrow sµµ processes consistently lower than SM predictions at 2-3 σ level, compatible with LFU results (P. Owen's talk)
- Anomaly at 3σ level for P'₅ angular observable in B⁰ \rightarrow K^{*0} $\mu\mu$
- $B^0/B^0_s \rightarrow \mu\mu$ BF probed down to $10^{-9}/10^{-10}$ level, consistent with SM, challenging NP scenarios
- Proof of concept measurement of $B_s^0 \rightarrow \mu\mu$ effective lifetime
- Improved BF upper limit of $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ and $K_{s}^{0} \rightarrow \mu^{+}\mu^{-}$
- First search for $B^0_{s} \rightarrow \tau^+ \tau^-$
- Global fits in tension with SM at $\sim 4\sigma$ level

Prospects: short and long term

- Nearly all results from LHCb so far use Run I data, 3 fb⁻¹ @ 7/8 TeV (only exceptions are B→µµ and cross sections, use partial 2016 data)
- Run II data is taken @ 13 TeV, where b-hadron cross sections are nearly twice as high
- Current detector will be used until the end of Run II (2018)
 - ✓ ~factor 5 on Run I yield
 - Increasing precisions by a factor ~2.5 with Run II, no limiting systematic uncertainties foreseen

- The LHCb upgrade will take data for 6 years starting 2021
 ✓ ~factor 25, ignoring trigger improvements
- A proposed LHCb upgrade phase II will take data after ~2030
 ✓ ~factor 200

Prospects: angular analyses

- Given current landscape, try $b \rightarrow sll$ angular analyses providing:
 - Orthogonal constraints
 - Measurements depending on different experimental effects
 - ✓ Measure size of long-distance charm effects
- B⁰→K^{*0}µµ
 - ✓ Run I has ~2400 signal candidates, expect ~ 10^4 in Run II
- B⁺→K⁺*ll*, sensitive to pseudo-scalar couplings
 ✓ Run I has ~4800 signal candidates
- $\Lambda_b \rightarrow \Lambda \mu \mu$ offers additional observables giving orthogonal constraints compared to B⁰_(s) $\rightarrow K^{(*)}(\phi)$ decay. Mostly relevant with LHCb upgrade
- Run II data allows for precise measurements with electrons
 - \checkmark Expect similar yields to muons with Run I
 - Worse q² resolution and larger backgrounds, different experimental effects compared to LFU

24

Prospects: B→*ll*

- A clear goal for Run II is the observation of the $B^0 \rightarrow \mu\mu$ decay
- Expected sensitivity $B_s^0 \rightarrow \mu \mu BF$ for Run II
 - ✓ LHCb: ≈ 0.33×10^{-9} , as current systematic uncertainties. Main systematic source given by knowledge of f_s/f_d
 - ✓ CMS: ≈14% CMS-PAS-FTR-14-015
- $B_s^0 \rightarrow \mu \mu$ effective lifetime needs 300 fb⁻¹ to make important measurement
- $B_s^0 \rightarrow \tau \tau$ would need huge enhancement factor to be visible

Prospects: message to go home

- Exciting program on rare decays, LFU and CPV ahead (Run II and beyond) (much more in P. Owen, O. Deschamps, J.J. Saborido's talks)
- LHCb is a multipurpose experiment, moving far beyond just a "dedicated" heavy flavour experiment
 - ✓ Electroweak precision measurements, e.g. $sin2\theta_W$
 - ✓ Exotic hadronic states, e.g. Pentaquarks
 - ✓ Search for long living particles, e.g. $B \rightarrow \chi K^*$, $\chi \rightarrow \mu \mu$
 - \checkmark Central exclusive production, J/ ψ production
 - ✓ Heavy ions, pPb PbPb
 - ✓ And the LHCb detector has a "fixed-target like" geometry and can work as such, e.g. SMOG
- The fully flexible, software-based trigger at 40 MHz starting in 2021 will dramatically improve most areas

Backup slides

$\Sigma^+ \rightarrow p \mu \mu$

• FCNC process, in SM PRD 72 (2005) 074003 $1.6 \times 10^{-8} < BF(\Sigma^+ \rightarrow p\mu^+\mu^-) < 9.0 \times 10^{-8}$

- In 2005, HyperCP observed 3 signal candidates $BF(\Sigma^+ \rightarrow p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$
- Very similar dimuon mass • Indication of $\Sigma^+ \to pX^0(\mu^+\mu^-)$?

28

→рµµ

- The $\Sigma^+ \rightarrow p\mu^+\mu^-$ decay has been confirmed by LHCb
- $K^+ \rightarrow \pi^+ \pi^-$ and $\Sigma^+ \rightarrow p \pi^0$ used as calibration and normalization channels
- 13 events, 4.0σ evidence
- No enhancement at $m(\mu\mu) = 214 \text{ MeV/c}^2$

LHCb-CONF-2016-013

LHCb status and prospects

- Run I: recorded 1 and 2 fb⁻¹ at 7 and 8 TeV, respectively
- Run II: recorded 2 fb⁻¹ at 13 TeV by end 2016, expected 8 fb⁻¹ by end 2018
- B-hadron cross section in LHCb acceptance doubled at Run II energy: $\frac{\sigma(pp \to b\bar{b}X @ 13 \text{ TeV})}{\sigma(pp \to b\bar{b}X @ 7 \text{ TeV})} = 2.14 \pm 0.02 \pm 0.13$ PRL 118 (2017) 052002
- B-hadron events recorded by end 2016 (ignoring trigger improvements):

$$\frac{N_{b-\text{hadrons}} (\text{Run I} + 2015 - 16)}{N_{b-\text{hadrons}} (\text{Run I})} \approx 2.4$$

✓ Statistical uncertainties ÷1.5

B-hadron events expected after Run II completion (end 2018):

$$\frac{N_{b-\text{hadrons}}(\text{Run I} + \text{Run II})}{N_{b-\text{hadrons}}(\text{Run I})} \approx 6.7$$

✓ Statistical uncertainties ÷2.6